А. Yu. Aleksandrova, V. Е. Dombrovskaya. Adaptive Tourism Modeling: Experience, Problems and Prospects of Application at the Regional Level

UDК 338.48:332.1 

DOI: 10.15507/2413-1407.118.030.202201.076-102

Abstract

Introduction. The crisis of the tourist industry caused by the COVID-19 pandemic emphasized the existing regional asymmetry in the development of Russian tourism. Despite the diversity of tourist and recreational potentials in the regions, the main reason for such significant differences in the efficiency of the field of industry and hospitality lies in the tourist activity management. The most important tool for regional policies is forecasting. The purpose of the article is to consider the prognostic capabilities of adaptive models in relation to tourist studies at a regional large-scale level based on data from official statistics.

Materials and Methods. The study is based on the adaptive modeling method, which has proven itself to obtain short-term forecasts of a number of small samples developing under uncertainty. As the objects of modeling were the series of the dynamics of indicators characterizing tourist activities in the Baikal region. Modeling was based on the series inherent in the regional tourism with a pronounced seasonal component and time series with annual indicators, where only the trend component is detected during decomposition.

Results. Adaptive models have shown high prognostic capabilities with the exception of series in which a sharp collapse of the indicator caused in this case by the introduction of restrictions on tourist mobility occurs during one last time step. The model under these conditions objectively does not have time to adapt. If there is a temporary possibility of to “learning”, the forecast even of a sharp decline in the tests under study has a confirmed high accuracy.

Discussion and Conclusion. According to the results of the study, it is confirmed by the possibility of using adaptive modeling to predict the series of dynamics of tourist activity indicators at the regional level, undergoing sharp changes in the conditions of uncertainty. The results of the work may be useful to specialists in the field of regional policies, in particular to employees of tourist administrations, a business community, as well as scientific and pedagogical personnel in the relevant area and can be used in the preparation of specialists of higher and secondary vocational education in tourism.

Keywords: forecasting, adaptive modeling, tourist flows, regional asymmetry, programming language R

The authors declare that there is no conflict of interest.

For citation: Aleksandrova А.Yu., Dombrovskaya V.Е. Adaptive Tourism Modeling: Experience, Problems and Prospects of Application at the Regional Level. Regionology = Russian Journal of Regional Studies. 2022; 30(1):76-102. doi: https://doi.org/10.15507/2413-1407.118.030.202201.076-102

REFERENCES

1. Ostapenko I.N., Usenko R.S. About Expert Methods of Modeling Indicators of Tourism Activities. Upravlenie ekonomicheskimi sistemami: elektronnyi nauchnyi zhurnal = Economic System Management. 2017; (9). Available at: https://elibrary.ru/item.asp?id=30022784 (accessed 30.08.2021). (In Russ., abstract in Eng.)

2. Athanasopoulos G., Hyndman R.J., Song H., Wu D.C. The Tourism Forecasting Competition. International Journal of Forecasting. 2011; 27(3):822-844. (In Eng.) doi: https://doi.org/10.1016/j.ijforecast.2010.04.009

3. Morozov M.A., Morozova N.S. Tourist Destination Development: Modeling and Forecasting. Сervis plus = Service Plus. 2014; 8(3):32-38. (In Russ., abstract in Eng.) doi: https://doi.org/10.12737/5535

4. Siddique N., Adeli H. Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing. West Sussex; 2013. (In Eng.) doi: https://doi.org/10.1002/9781118534823

5. Guerra-Montenegro J., Sanchez-Medina J., Laña I., et al. Computational Intelligence in the Hospitality Industry: A Systematic Literature Review and a Prospect of Challenges. Applied Soft Computing Journal. 2021; 102. (In Eng.) doi: https://doi.org/10.1016/j.asoc.2021.107082

6. Daragan S.V., Rumyantseva A. Using of Neural Network Technologies in the Management of Enterprises in the Tourism Industry. Industriya turizma: vozmozhnosti, prioritety, problemy i perspektivy = Tourism Industry: Opportunities, Priorities, Problems and Perspectives. 2018; 12(2):52-60. Available at: https://www.elibrary.ru/item.asp?id=35588064 (accessed 30.08.2021). (In Russ., abstract in Eng.)

7. Kozlov D.A. Neuroagents in Hospitality Industry and Tourism. ITportal = ITportal. 2016; (3). Available at: https://itportal.ru/science/economy/neyroagentnye-tekhnologii-v-industr/ (accessed 30.08.2021). (In Russ., abstract in Eng.)

8. Xiea G., Qiana Y., Wang Sh. A Decomposition-Ensemble Approach for Tourism Forecasting. Annals of Tourism Research. 2020; 81. (In Eng.) doi: https://doi.org/10.1016/j.annals.2020.102891

9. Li X., Law R., Xie G., Wang Sh. Review of Tourism Forecasting Research with Internet Data. Annals of Tourism Research. 2021; 83. (In Eng.) doi: https://doi.org/10.1016/j.tourman.2020.104245

10. Li H., Hu M., Li G. Forecasting Tourism Demand with Multisource Big Data. Annals of Tourism Research. 2021; 83. (In Eng.) doi: https://doi.org/10.1016/j.annals.2020.102912

11. Bokelmann B., Lessmann S. Spurious Patterns in Google Trends Data – An Analysis of the Effects on Tourism Demand Forecasting in Germany. Tourism Management. 2019; 75:1-12. (In Eng.) doi: https://doi.org/10.1016/j.tourman.2019.04.015

12. Evstropyeva O.V., Bibaeva A.Yu., Sanzheev E.D. Modeling Tourist Flows at the Regional and Local Levels. Experience of Implementation in CEZ BNT. Sovremennye problemy servisa i turizma = Service and Tourism: Current Challenges. 2019; 13(1):85-97. (In Russ., abstract in Eng.) doi: http://doi.org/10.24411/1995-0411-2019-10110

13. Andrianova E.G., Golovin S.A., Zykov S.V., Lesko S.A., Chukalina E.R. Review of Modern Models and Methods of Analysis of Time Series of Dynamics of Processes in Social, Economic and Socio-Technical Systems. Rossijskij tehnologicheskij zhurnal = Russian Technological Journal. 2020; 8(4):7-45. (In Russ., abstract in Eng.) doi: https://doi.org/10.32362/2500-316X-2020-8-4-7-45

14. Liu A., Vici L., Ramos V., et al. Visitor Arrivals Forecasts Amid COVID-19: A Perspective from the Europe Team. Annals of Tourism Research. 2021; 88. (In Eng.) doi: https://doi.org/10.1016/j.annals.2021.103182

15. Qiu R., Chenguang W., Dropsy V., et al. Visitor Arrivals Forecasts Amid COVID-19: A Perspective from the Asia and Pacific Team. Annals of Tourism Research. 2021; 88. (In Eng.) doi: https://doi.org/10.1016/j.annals.2021.103155

16. Kourentzes N., Saayman A., Jean-Pierre P., et al. Visitor Arrivals Forecasts Amid COVID-19: A Perspective from the Africa Team. Annals of Tourism Research. 2021; 88. (In Eng.) doi: https://doi.org/10.1016/j.annals.2021.103197

17. Aleksandrova A.Yu., Bobylev S.N., Solovyeva S.V., Khovavko I.Yu. Overtourism at Baikal: Problems and Ways of Addressing Them. Geografiya i prirodnye resursy = Geography and Natural Resources. 2021; (3). (In Russ., abstract in Eng.) doi: http://dx.doi.org/10.15372/GIPR20210308

18. Aleksandrova A.Yu., Dombrovskaya V.E. Application of Adaptive Modeling in Tourist Flow Studies. Sovremennye problemy servisa i turizma = Service and Tourism: Current Challenges. 2021; 15(1):7-20. (In Russ., abstract in Eng.) doi: https://doi.org/10.24411/1995-0411-2021-10101

Submitted 03.09.2021; approved after reviewing 14.10.2021; accepted for publication 25.10.2021.

About the authors:

Anna Yu. Aleksandrova, Professor, Department of Recreational Geography and Tourism, Lomonosov Moscow State University (1 Leninskie Gory, Moscow 119991, Russian Federation), Dr. Sci. (Geography), ORCID: https://orcid.org/0000-0002-1772-8431analexan@mail.ru

Veronika E. Dombrovskaya, Associate professor, Department of Tourism and Nature Management, Tver State University (33 Zhelyabova St., Tver 170100, Russian Federation), Cand. Sci. (Physics and Mathematics), ORCID: https://orcid.org/0000-0002-7138-1774dombrovskaya.ve@tversu.ru

Contribution of the authors:

A. Yu. Aleksandrova – concept of the article; theoretical content of the article; research results analysis and interpretation.

V. E. Dombrovskaya – research methods; research conducting; data processing; research results analysis and interpretation.

The authors have read and approved the final version of the manuscript.

To download article

Лицензия Creative Commons
Материалы журнала "РЕГИОНОЛОГИЯ REGIONOLOGY" доступны по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная